Saint Jean sur l'île de Patmos |
Heures d'Étienne Chevalier, enluminées par Jean Fouquet, XVe siècle Chantilly, musée Condé © photo RMN |
Soit ABCD le rectangle
interne au cadre de la peinture. La section dorée dans le sens
vertical est définie par le rapport suivant : DC/DF = CD/CE =
AB/AF4 = BA/BE' = 11,4 cm/7,045 cm = 1,618
La zone ainsi délimitée contient l'écu au chiffre du destinataire et l'essentiel du sujet : saint Jean en train de rédiger le livre de l'Apocalypse. Le livre s'ouvre sur la médiatrice MM' des côtés AB et DC du rectangle. La médiatrice NN' des deux autres côtés coupe la médiatrice MM' en O. Ce point est le centre d'une sphère ayant l'île comme plan médian. Le buste de saint Jean et l'aigle, son symbole, sont contenus dans un espace délimité par ce plan et l'arc de cercle de rayon MG, G étant le point qui divise selon Ф le côté AD tel que : DA/DG = 15,7 cm/9,703 cm = 1,618 Fouquet a combiné, ici, la perspective curvilinéaire et le nombre d'or pour donner une impression d'espace sans trop réduire le sujet. |
|